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Visualization of metabolic dynamism is important for various types of metabolic studies including studies on opti-
mization of bio-production processes and studies of metabolism-related diseases. Many methodologies have been
developed for metabolic studies. Among these, metabolic turnover analysis (MTA) is often used to analyze metabolic
dynamics. MTA involves observation of changes in the isotopomer ratio of metabolites over time following introduction
of isotope-labeled substrates. MTA has several advantages compared with 13C-metabolic flux analysis, including the
diversity of applicable samples, the variety of isotope tracers, and the wide range of target pathways. However, MTA
produces highly complex data from which mining useful information becomes difficult. For easy understanding of MTA
data, a new approach was developed using principal component analysis (PCA). The resulting PCA score plot visualizes
the metabolic distance, which is defined as distance between metabolites on the real metabolic map. And the score plot
gives us some hints of interesting metabolism for further study. We used this method to analyze the central metabolism
of Saccharomyces cerevisiae under moderated aerobic conditions, and time course data for 77 isotopomers of 14 me-
tabolites were obtained. The PCA score plot for this dataset represented a metabolic map and indicated interesting
phenomena such as activity of fumarate reductase under aerated condition. These findings show the importance of a
multivariate analysis to MTA. In addition, because the approach is not biased, this method has potential application for
analysis of less-studied pathways and organisms.
� 2014, The Society for Biotechnology, Japan. All rights reserved.
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Recent advances in the comprehensive analysis of metabolites,
i.e., metabolomics, have enabled differentiation of sample types
and elucidation of contributing metabolites (1,2). These techniques
have been successfully used in research areas such as phenotyping
(1) and in quality control processes (2). However, snapshots of the
metabolome only provide static information that is sometimes
difficult to apply to dynamic aspects of metabolism such as the
direction of a reaction or distribution of flux, whereas some
research areas such as metabolic engineering (3) and studies of
metabolism-related diseases (4) sometimes require dynamic
information.

At present, analysis of metabolic dynamics is commonly per-
formed by 13C-metabolic flux analysis (13C-MFA). 13C-MFA is based
on simultaneous partial differential equations (5,6). Recently,
turnover analysis of metabolites by using isotope tracers has also
been used for dynamic analyses of several metabolic pathways
simultaneously (7,8). For convenience, in this article, we have
termed this turnover analysis of many metabolites as metabolic
turnover analysis (MTA). Although both methods share the same
purpose, i.e., revealing metabolic dynamism, they are based on
different approaches. Therefore, these 2 methods have different
applications. 13C-MFA is designed to generate intensive and precise
results under controlled conditions. In particular, 13C-MFA utilizes
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steady-state labeling patterns and ratios of downstream metabo-
lites. The substrate is usually partially labeled by an isotope. For
example, in the study of central metabolism, 1-13C1-glucose is
commonly used as a label, and the labeling patterns and ratios of
amino acids are analyzed. 13C-MFA is used to calculate the fluxes
from these steady-state labeling patterns and a preliminarily
defined metabolic map. Therefore, 13C-MFA is a strong tool for
studies conducted using highly controlled conditions, such as
optimization of metabolic engineering (9). Recently isotopic non-
stationary MFA (INST-MFA) is also developing. INST-MFA calculates
flux of steady state cell from the time resolving data of isotopomer
ratio and absolute quantity of metabolites (10). Compared with 13C-
MFA, INST-MFA can use variety labeling source.

On the other hand, MTA has fewer constraints than 13C-MFA.
MTA can be used to analyze cells that are typically not in steady
state conditions, such as those of the plant body (8). It can be
performed using fully labeled tracers such as 13CO2 (8,11) and 15NH3
(7). Further, it can also be used to observe various pathways such as
nitrogen assimilation (7). MTA is used for analyzing the changes in
the isotopomer ratio over time for each metabolite after addition of
a labeled substrate (Fig. 1). In turnover analysis, only the pathways
which have detectable metabolites can be analyzed. Therefore, the
target pathways had been limited by technology of analytical
chemistry. Recent advances in metabolomics technology (12) had
enabled expansion of the target pathway of MTA. However, it also
created a significant challenge in data analysis. Because each iso-
topomer of several metabolites are measured at time course, the
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FIG. 1. Concept of data mining with principal component analysis. In our concept, the similarity among metabolic turnover data represents the metabolic dynamics. Principal
component analysis (PCA) effectively shows the similarity in a two-dimensional plane. Moreover, plots of non-labeled isotopomers show a rough overview of the metabolic
pathway (upper part) and plots of labeled isotopomers show relatively active alternative metabolic pathways.
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size of MTA data increases enormously after combination with a
metabolomics approach.

In this article, we demonstrate new approach to mine informa-
tive ideas from the huge dataset of MTA. For convenience, we
definedmetabolic distance as the number of reaction steps between
2 metabolites. For instance, a few reaction steps such as those be-
tween glucose and glucose-6-phosphate are described as a short
metabolic distance, and many reaction steps such as those between
glucose and glutamate are described as a long metabolic distance.
Although estimation of the reaction route of metabolites is starting
point for study of metabolism, the estimation is sometimes wrong
because of unknown pathways or just neglect of alternative path-
ways. For example, pyruvate is converted to oxaloacetate in 9 reac-
tion steps through the TCA cycle. Meanwhile, this conversion could
also occur in one step using pyruvate carboxylase.

We hypothesized that real metabolite distance can be estimated
from metabolic turnover. Because the metabolites in a cell are
gradually replaced with the labeled isotopomers starting from the
upstream of the metabolic pathways, the metabolite at a shorter
metabolic distance from the label source should be labeled faster
than the metabolites at longer metabolic distances in the same
pathway. Therefore, the similarity among turnover data of each
isotopomer are closely related with metabolic distance. Further-
more, the MTA data of metabolites that have the same metabolic
distance from one precursor may reflect the flux of each pathway.
Although the pool size, sub-localization and bypass of intermediate
have to be considered, visualization of similarity among each
turnover data is helpful to analyze metabolic distance. In this
report, we suggest a new data mining approach to elucidate
metabolic distance by combining multivariate analysis and MTA to
mine interesting relation among turnover data (Fig. 1).

In previous report, hierarchical cluster analysis (HCA) was per-
formed to classify the pattern of metabolic turnover (11). The au-
thors found anomalistically classified metabolites against
references. This approach was advanced from the view point of
making connections among metabolites by performing multivar-
iate analysis to metabolic turnover. However, the study did not
analyzed labeled isotopomers. Because the isotope number of an
isotopomer sometimes defined by pathway which they are pro-
duced, turnover of labeled isotopomers is also informative.
In this point of view, we applied the principal component
analysis (PCA) to whole MTA data. The resulted score plot repre-
sents the metabolic pathway used to generate the isotopomers. In
particular, the score plot of non-labeled mono-isotopomers, which
simply decrease after addition of the labeled substrate, shows a
rough illustration of the metabolic map based on metabolic dis-
tance. In contrast, the score plot of labeled isotopomers, whose
number is affected by branch points, shows a more detailed illus-
tration of the metabolic pathway. The score plot can be used to
visualize metabolic distance and enable us to figure out charac-
teristics of the metabolism and contrary parts against our knowl-
edge or estimation of metabolism (Fig. 1). We employed our
method for metabolic dynamic analysis of central metabolism in
Saccharomyces cerevisiae, which is one of the most studied model
organisms.We selected central metabolism for the analysis because
it has several branches, confluences, cycles, and reverse reactions
that are difficult to visualize solely by quantitative analysis of
metabolites.

MATERIALS AND METHODS

Simulation of isotopomer ratio Simulation data for change in the iso-
topomer ratio over time were calculated using Excel 2007 (Microsoft, WA, USA). The
equation and initial parameters are described in Table S1. The sampling time were
t ¼ 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10,000 with
10% of relative standard deviation (RSD). Then the data was added 10% of RSD and
applied to PCA (Table S2).

Reagents Citric acid, glyceraldehyde-3-phosphate, and malic acid were
purchased from Nacalai Tesque (Kyoto, Japan). Ribose-5-phosphate, ribulose-5-
phosphate, ribulose-1,5-bisphosphate, erythrose-4-phosphate, fructose-1,6-
bisphosphate, 3-phosphoglyceric acid, 2-phosphoglyceric acid, glucose-6-phos-
phate, fructose-6-phosphate, and dihydroxyacetone phosphate were purchased
from Sigma (MO, USA). Phosphoenolpyruvate was purchased from Wako (Osaka,
Japan). 1,4-Piperazinediethanesulfonic acid (PIPES) was purchased from Dojindo
(Kumamoto, Japan). Sedoheptulose-7-phosphate was a gift from Dr. Shigeoka and
Dr. Tamoi (Kinki University, Nara, Japan). U-13C6-D-Glucose was purchased from
Cambridge Isotope Laboratory (MA, USA). For extraction and analysis, we obtained
HPLC-grade distilled water from Wako, HPLC-grade chloroform from Merck
(Darmstadt, Germany), HPLC-grade methanol from Kishida (Osaka, Japan), and
HPLC-grade ammonium formate from Sigma.

Yeast cultivation The strain used in this study was S. cerevisiae BY4742
(MATa, leu2D0, his3D1, lys2D0, ura3D0). To obtain a single-colony isolate, glycerol-
stocked cells were streaked onto a yeast extract peptone dextrose (10 g/L yeast
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extract, 20 g/L peptone, and 20 g/L glucose) agar plate and incubated at 30�C for 2
days. A single colony was inoculated into 5 mL of synthetic defined medium (6.7 g/L
yeast nitrogen base without amino acid, histidine 20 mg/L, leucine 100 mg/L, lysine
20 mg/L, and uracil 20 mg/L) and incubated overnight at 30�C for 16 h. The cultures
were diluted with 50 mL of fresh medium to OD600 0.01, and cultivation was
continued in baffled flasks up to OD600 1.5 (log phase). The flasks were rotated at
220 rpm on a rotary shaker. The cells were harvested rapidly by vacuum filtration by
using a 47-mm polytetrafluoroethylene (PTFE) membrane filter with a pore size of
1 mm (Millipore, MA, USA). The filter was then immediately placed into 50 mL of
fresh SD medium containing 10 g/L U-13C6-D-glucose instead of non-labeled glucose
to re-suspend the cells. The cells were incubated at 30�C and collected in 5 mL of
medium each at 10 s, 20 s, 40 s, 80 s, 160 s, 320 s, 640 s, and 1280 s after the sus-
pension point. During this time, the culture medium was stirred using a magnetic
stir bar. Sampling was performed by injecting 5 mL of culture medium into 25 mL of
methanol cooled in an ethanol bath containing dry ice. The cells were collected by
centrifugation (5200�g,�8�C,15min). The supernatant was removed, and the pellet
was frozen in liquid nitrogen. The cells were lyophilized and stored at �80�C until
use. The quenching method used was modified from a previous report (13). For
absolute quantification, cells were collected at OD600 1.5 by vacuum filtration by
using a 47-mm PTFE membrane filter, quenched rapidly using liquid nitrogen and
stored at �80�C until use.

Metabolite extraction Six hundred microliters of methanol and 20 mL of
internal standard solution (100 mmol/L ribitol and PIPES) were added to the tube that
contained the dried cells (approximately 1 mg), hand-vortexed, and then incubated
at 30�C for 5 min. Then, 600 mL of chloroform and 220 mL of distilled water were
added to the tube and hand-vortexed. The liquid was transferred to a 2-mL plastic
tube and centrifuged at 10,000 �g and 4�C for 5 min. The supernatant was trans-
ferred to a new 1.5-mL plastic tube. Then, 240 mL of distilled water was added, and
the supernatant was collected by the same procedure. The supernatant was
centrifugally filtered through an Ultrafree MC filter with a 5-kDa cut-off (Millipore)
at 10,000�g for 60min. The ultrafiltrate was centrifugally dried and lyophilized. The
pellet was dissolved in 20 mL of distilled water and subjected to capillary electro-
phoresis/electrospray ionization/mass spectrometry (CE/ESI/MS). For absolute
quantification, sample was extracted using 1 mL mix solvent
(chloroform:methanol:water ¼ 2:5:2) with extract of completely labeled
S. cerevisiae with 13C6-glucose. Then, 400 mL of distilled water was added, and the
supernatant was collected, centrifugally dried and lyophilized. The pellet was dis-
solved in water and subjected to CE/ESI/MS.

Analytical instruments All CE-ESI-MS/MS analyses were performed using a
P/ACE MDQ (Beckman Coulter, CA, USA) and a 4000QTRAP hybrid triple quadrupole
linear ion-trap mass spectrometer with a Turbo V ion source and CE-MS kit (Applied
Biosystems, CA, USA). A MP-711 micro flow pump (GL Science, Tokyo, Japan) was
used for delivery of the sheath liquid. 32 Karat software (Beckman Coulter) was used
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FIG. 2. Simulation data for dynamic analysis of metabolic pathways. (a) Virtual metabolic map
letters indicate the carbon skeleton. The arrows indicate the direction of flux, and the numbe
labeled isotopomers of A, B, C, and J. Letters indicate each metabolite and numbers indicat
tabolites. The flux of non-labeled J is derived from B and much slower than that of C. Non-lab
performed on the simulated time course of isotopomer ratio data determined from the virtu
score when raw data include 10% of sampling time and analytical measurement error (n ¼
almost the same flux generated a cluster (in the dotted line) with the same order as that of 13

J, J0 was plotted further from B0 than from C0 (in the solid line).
to control CE performance. The Analyst software 1.5.1 (Applied Biosystems) was
used for control of MS/MS, data acquisition, and data evaluation.

Analytical conditions The analytical method used in this study has been
previously reported (14). CE separations were performed using FunCap-CE type S
(GL Science). The capillary dimensions were 50 mm i.d. and 80 cm length. The
electrolyte used in CE was 50 mmol/L ammonium acetate adjusted to pH 9.0 by
addition of ammonium hydroxide. Before use, each new capillary was washed
with running electrolyte for 60 min under a pressure of 30 psi (2.1 bar). Before
injection, in each analysis, the capillary was pretreated with running electrolyte
for 5 min under a pressure of 30 psi. Each sample was injected at a pressure of
2.0 psi (14 mbar) for 5.0 s (6 nL). The CE polarity was such that the electrolyte vial
(inlet) was at the anode and the ESI probe (outlet) was at the cathode. The voltage
applied to the CE capillary was set at 30 kV with 0.30 min of a ramp time. The
capillary temperature was maintained at 20�C. Ammonium formate (5 mM) in
50% (v/v) acetonitrile/water as a sheath liquid was delivered to the electrospray
probe at a rate of 10 mL/min. ESI-MS/MS was conducted in the negative ion mode.
Ion spray voltage was applied at �4.5 kV only after 1 min of voltage application to
CE. All analytes were monitored in multiple reactions monitoring (MRM) mode by
using the m/z parameter calculated from a previous study (14, Table S3). The
dwell time was also set within the range of 50 ms to 100 ms, and the total time
was set at 1 s.

Analysis of CE/MS data The peak area of the CE/MS data was manually
determined. Initially, to reduce the effect of the natural abundance of isotopes, a
correction formulawas applied to the peak area of the isotopomers (Table S4). In this
matrix, the rows, columns, and cells represent isotopomer, time, and isotopomer
ratio, respectively. For absolute quantification, area ratio of the 13C0 peak to the
13C-fully labeled peak of each metabolite in a mixture of non-labeled and fully
labeled samples was calculated to reduce the effect of extraction efficiency and
analysis error like ionization suppression. Also, area ratio of a 13C0 peak to a 13C-
fully labeled peak in sample mixture of 13C-fully labeled S. cerevisiae and
commercially purchased non-labeled compounds of the metabolites was
calculated. Then absolute quantity was calculated from these two area ratios.

Multivariate analysis PCA was conducted using Pirouette 4.0 (InfoMetrix,
WA, USA). Preprocessing was not performed before PCA, and each isotopomer was
used as a class and each datum from each time point was used as a vector.

RESULTS AND DISCUSSION

PCA analysis of simulation data To check the performance
of our approach to visualize metabolic distance, we simulated
metabolic turnover that were calculated based on a virtual map
(Fig. 2a). The virtual map contained a cycle and branch whose
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outlet fluxes differed by 20 fold. For simple understanding of our
approach, we calculated the quantity of metabolites uniformly.
Sampling of data processing was performed at 11 data point with
10% of sampling time error and analytical measurement error.
Data collection was performed 10 times and PCA was performed
to the each replication data respectively. At first, we had
estimated that sampling time error should affect to the result
significantly because sampling time error affected all of
isotopomer ratio for each metabolite. Surprisingly, against our
estimation, both of sampling and measurement errors did not
effect to the PCA score plot topology (error bar in Fig. 2c). This
result indicates the robustness of this analysis against both of the
errors. As a result of PCA, principal component (PC) 1 was
separated on the basis of the turnover speed, and PC2 was
separated on the basis of the non-labeled and labeled
isotopomers. The score plot demonstrated the metabolism of the
substrate (Fig. 2c) and validated our concept shown in Fig. 1. The
topology of the plots for the non-labeled isotopomers is in
complete agreement with that of the virtual metabolic map. In
this pathway, the metabolic distance from the label source and
the plot order on the score plot are completely matched.
Moreover, the different fluxes of the branch points (B0 to C0 and
J0) are also expressed in the score distance (Fig. 2c) because
narrow flux enhances the difference in time course data for the
metabolic turnover between precursor and product metabolites
(Fig. 2b). These findings show that MTA data indicate the flux
when the metabolic distances of metabolites from the label
source are same and the metabolite quantity is similar. The result
of this in silico experiment did not fully validate our approach
because we did not consider the metabolite level. However, this
result encouraged us to apply the method to an in vivo system.

Dynamic analysis of metabolic pathway based on time
course data for the isotopomer ratio CE/MS analysis was per-
formed to analyze metabolites involved in glycolysis, the pentose
phosphate pathway, and the TCA cycle, and metabolic turnover
data of 77 isotopomers of 14 metabolites were analyzed (Table S5).
The absolute quantity of these metabolites was also determined. To
mine MTA data by metabolic distance, the similarity of the time
course data to the isotopomer ratio was visualized using PCA
(Fig. 3a, Fig. S1).

In the score plot, as with the simulation data, PC1 had a same
tendency to be separated on the basis of the turnover speed and
PC2 was separated on the basis of non-labeled and labeled iso-
topomers. For plots of non-labeled isotopomers, one cluster con-
sisted of isotopomers involved in glycolysis and the pentose
phosphate pathway and the other cluster consisted of isotopomers
involved in the TCA cycle. For plots of labeled isotopomers, one
cluster consisted of fully labeled isotopomers involved in glycolysis
and the pentose phosphate pathway and the other cluster consisted
of semi-labeled isotopomers involved in the TCA cycle.

This score plot demonstrates some characteristics of the central
metabolism of S. cerevisiae. The most visible result was the for-
mation of 2 different clusters of non-labeled isotopomers: one
cluster involved in glycolysis and the other cluster involved in the
TCA cycle (Fig. 3a-1). The gap between these two clusters indicates
a large outflux from glycolysis to a pathway other than the TCA
cycle, presumably ethanol fermentation. Based on the measure-
ment of ethanol production during the log phase of our cultivation
condition, the conversion rate of glucose to ethanol has a molar
ratio of approximately 1.2 (Fig. S2). In general, the maximum con-
version rate was 3, which means that one-third of the glucose was
converted to ethanol. This result agrees with that of a previous
report, which mentioned that S. cerevisiae is Crabtree-positive
and is known to ferment ethanol in 1% glucose under aerobic
conditions (15).
Another interesting observation is the position of the non-
labeled isotopomer of 2-oxoglutarate (Fig. 3a-2). The turnover
data for 2-oxoglutarate indicate slow labeling of this metabolite,
and a PCA score plot was used to visualize this observation as
shown in Fig. 3a-2. Slow turnover of 2-oxoglutarate had been
unexpected because it is an important compound for nitrogen
assimilation and an important precursor for some amino acids.
This slow turnover is presumably due to influx of glutamate from
the metabolite pool. 2-Oxoglutarate is known as a substance of
glutamate dehydrogenase to assimilate inorganic nitrogen and
turns glutamate. The amine group of glutamate is then trans-
ferred to a keto acid to produce other amino acid and 2-oxo-
glutarate by aminotransferase. Our result probably indicates this
nitrogen assimilation cycle.

The most interesting result was the position of non-labeled
isotopomers of malate and fumarate (Fig. 3a-3), which were plotted
closer to the glycolysis cluster than citrate was (Fig. 3a Citþ0). This
localization indicates a large influx into the TCA cycle, which is not
derived from acetyl-CoA. Further evaluation of labeled isotopomers
indicated that because the 13C number of the labeled isotopomers
was affected by the pathway, distribution, and precursor, the time
course data for labeled isotopomers reflected the passage of the
labeled substrate. In the lower part of the score plot, we expected
that the plotted location of 13C2-citrate would be closest to iso-
topomers involved in glycolysis. If carbon influxes from acetyl-CoA
into the TCA cycle, 13C2-citrate should increase first, followed by the
other 13C2-isotopomers in the TCA cycle (Fig. 3c). However, in the
score plot, 13C3-malate (Fig. 3a Malþ3) and 13C3-fumarate (Fig. 3a
Fumþ3) were plotted closer to the cluster of isotopomers involved
in glycolysis than 13C2-citrate was. When oxaloacetate is synthe-
sized via pyruvate carboxylase, all 3 carbons in the pyruvate
molecule are converted to oxaloacetate (Fig. 3c-3). Consequently,
when 13C3-pyruvate is abundant, 13C3-oxaloacetate increases first,
followed by neighbor metabolites such as malate and fumarate.
Although slow turnover sometimes caused by large pool size of
metabolites, level of acetyl-CoA and citrate was not large compare
with the metabolites nearby (Fig. 3b). From the topology of the
score plot and absolute quantity of metabolites, we assume that
high activity of pyruvate carboxylase was present. Although, we did
not detect pyruvate and oxaloacetate, the metabolic turnover of the
13C2 and 13C3 isotopomers in the TCA cycle support the idea (Fig. 4).
This result is reasonable because cell should supply additional
carbon source to TCA cycle for production of essential metabolites
such as glutamate and aspartate under synthetic medium. Also the
result agreed with previous study that pyruvate carboxylase is
accumulated under synthetic medium with NH4

þ as solo nitrogen
source, which is similar medium condition to ours (16).

In addition, 13C3 succinate was also plotted closer to the cluster
of full-labeled isotopomers involved in glycolysis than 13C3 citrate,
but further than 13C3 malate and 13C3 fumarate (Fig. 3a-4). This
result implies the formation of succinate from fumarate. The time
course data of 13C2 and 13C3 isotopomers (Fig. 4) support this hy-
pothesis. Fumarate reductase (FRD), which is corresponding
enzyme of the reaction, is lethal under anaerobic conditions (17).
Under anaerobic conditions with aspartate as the only nitrogen
source, the activity of this enzyme observed in a nuclear magnetic
resonance study using 13C-aspartate (18). In this study, we culti-
vated yeast under moderately aerated conditions with ammonium
sulfate as the main nitrogen source. Therefore, we hypothesize that
the fumarate reductase is active under both aerobic and anaerobic
conditions. Previous study of succinic acid production had
demonstrated that double disruption of osm1 and frds, which are
fumarate reductase genes, caused lower productivity of succinate
(19). The tendency is enhanced by reduction of aeration supply.
This study supported our hypothesis, but further investigation
needed for confirmation.
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points. (b) Absolute quantity of metabolites. Error bars indicate standard deviation (n ¼ 4). (c) A metabolic pathway based on the results of the PCA score plot. The circled numbers
correspond to the same number on the score plot. The abbreviation list is as follows: G6P, glucose-6-phosphate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; S7P,
Sedoheptulose-7-phosphate; FBP, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; 3PGA, 3-phosphoglycerate; PEP, phosphoenolpyruvate; Cit, citrate; Oxo, 2-
oxoglutarate; Suc, succinate; Fum, fumarate; Mal, malate.
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In contrast, in 13C-MFA, succinate production from fumarate is
not observed in S. cerevisiae regardless of the aeration conditions
(20,21). This discrepancy in the results of 13C-MFA may be due to
the differences in the accuracy of flux estimation among the
metabolic pathways. Recent common 13C-MFA uses labeling of
amino acids to determine the distribution and the relative amounts
of precursor metabolites, and these data are used to calculate the
flux with regard to central metabolism. Although this technique is
well established, it is difficult to estimate the flux in metabolic
pathways in which the end-products are not amino acids. This is
probable reasonwhy the fumarate reductase flux was not observed
by 13C flux analysis even under anaerobic condition. This discrep-
ancy would be solved by the future investigation of recently
developing INST-MFA, which calculate flux from time resolving
data of isotopomer and absolute quantity of metabolites (10).
We also performed HCA to the non-labeled isotopomer data for
comparison (Fig. S3). The clusters of HCAwere completely matched
with the clusters of PCA. One of the advantage of HCA against PCA is
listing of packed cluster. However, since HCA calculate the metric of
each cluster, the linkage topology is sometimes not matched with
the metric among samples (e.g., Fig. S3, Oxo). Therefore, for turn-
over analysis, HCA is more suitable to make clusters and check the
metabolites in the clusters and PCA is more suitable to analyze the
relation among metabolites and clusters.

As described above, the metabolic dynamics of S. cerevisiae
under moderately aerobic fermentation were analyzed by evalu-
ating the change in the isotopomer ratio over time. The result
showed that one of the important carbon influx to the TCA cycle is
pyruvate carboxylase, and succinate was partly produced from
fumarate. In this study, we focused on a knownmetabolic pathway;
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however, in principal, this method does not require a metabolic
map for data processing. Hence, this method has a potential to be
applied for analysis of unusual organisms and pathways for char-
acterization of the metabolic map.

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jbiosc.2014.02.014.
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