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Abstract

In plant genetic engineering, the identification of gene promoters leading to particular expression patterns is crucial for the
development of new genetically modified plant generations. This research was conducted in order to isolate and
characterize several new promoters from cassava (Manihot esculenta Crantz) elongation factor 1 alpha (EF1A) gene family.
Three promoters MeEF1A3, MeEF1A4 and MeEF1A5 were successfully isolated. Sequence analyses showed that all of the
promoters contain three conserved putative cis-acting elements which are located upstream of the transcription start site.
These elements are included a TEF1, a TELO and TATA boxes. In addition, all of the promoters also have the 59UTR intron but
with a different lengths. These promoters were constructed translationally with gusA reporter gene (promoter::gusA fusion)
in pBI-121 binary vector to build a new binary vector using Overlap Extension PCR Cloning (OEPC) technique. Transient
expression assay that was done by using agroinfiltration method was used to show functionality of these promoters.
Qualitative and quantitative analysis from GUS assay showed that these promoters were functional and conferred a specific
activity in tobacco seedlings (Nicotiana tabacum), tomato fruits (Solanum lycopersicum) and banana fruits (Musa acuminata).
We hypothesized that MeEF1A6 could be categorized as a constitutive promoter because it was able to drive the gene
expression in all transformed tissue described in here and also comparable to CaMV35S. On the other hand, MeEF1A3 drove
specific expression in the aerial parts of seedlings such as hypocotyl and cotyledon thus MeEF1A5 drove specific expression
in fruit tissue. The results obtained from transient analysis showed that these promoters had a distinct activity although they
came from same gene family. The DNA sequences identified here are new promoters potentially use for genetic engineering
in cassava or other plants.

Citation: Suhandono S, Apriyanto A, Ihsani N (2014) Isolation and Characterization of Three Cassava Elongation Factor 1 Alpha (MeEF1A) Promoters. PLoS
ONE 9(1): e84692. doi:10.1371/journal.pone.0084692

Editor: Marie-Joelle Virolle, University Paris South, France

Received May 11, 2013; Accepted November 25, 2013; Published January 3, 2014

Copyright: � 2014 Suhandono et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was partly funded by Hibah Kompetensi 2009–2010, Directorate General of Higher Education, Department of Education, Indonesia. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ardha-s2@sith.itb.ac.id

Introduction

Cassava (Manihot esculenta Crantz) is a very important tropical

food crop for approximately 800 million people around the world

[1]. As a result, the demand for cassava is also increasing. One of

the efforts to increase the cassava production is by developing new

cassava varieties which are adapted to a various agroclimate

condition and tolerant to climate change. Classical breeding of

cassava is not easy and may take years. This is also not feasible due

to self-incompatibility, poor flowering ability, low pollen fertility

and low fruit set rate [2]. One possible solution is the use of genetic

modification to introduce gene of interest with important

agronomic traits such as disease resistance, abiotic stress tolerant,

extended shelf life (post-harvest-deterioration), low cyanogen

content and increase nutritional value (e.g., vitamin A, Zn, Fe)

content [1,3]. This is promising because protocols for stable

genetic modification of cassava have been successfully established

by several research groups [4,5]. However, the identification of

gene promoters leading to particular expression patterns is also

crucial for the development of new genetically modified plant

generations.

One of interesting protein is eukaryotic elongation factor 1

alpha (eEF1A), which is an important component for protein

biosynthesis [6]. eEF1A catalyzes the binding of aminoacyl-tRNA

to the A-site of the ribosome by a GTP-dependent mechanism [7].

eEF1A constitutes up to 3–10% of the total soluble protein and is

considered as one of the most abundant soluble protein in cells

cytoplasm [8]. Besides its canonical role in protein biosynthesis,

several other activities have been described for this protein (so

called moonlighting protein) [9], namely interaction with valyl-

tRNA synthetase complex [10], actin [11], tubulin [12], ubiquitin

[13] and calmodulin [14]. Moreover, eEF1A was reported to be

involved in signal transduction [15,16], virus infection mechanism

[17], nuclear export of proteins [18], and mitochondrial tRNA

import [19]. It is also suspected to have a role in apoptosis [9],

DNA replication/repair protein networks regulation [20], heat

shock proteins regulation [21] and has a molecular chaperone-like

activity [22,23].

Many studies revealed that eEF1As are typically encoded by

multigene family [24–29], a fact shared in cassava [30]. In plants,

one gene family may comprise of two to twenty copies of eEFIA.

For example, soybean [31] and carrot [32] contain two copies;

Oryza sativa [26] and Arabidopsis thaliana [24] have four copies each,

and sugarcane may contain up to twenty copies [29].

The genes encoding eEF1A are highly expressed in all

developing tissues, which exhibit high levels of protein synthesis.

However, several studies revealed that expression of the eEF1A

genes may be varies during developmental stages [29,32–34], low
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temperature [35], high temperature [36,37], drought [38], light

[31], low oxygen [39], chemical induction (e.g ethepon) [40],

pathogen attack [41] and physical wounding [42]. Our previous

study showed that one of the eEF1A genes in cassava (MeEF1A1)

was expressed in early stages of plant development and also

induced by wounding [43]. Recent study in A.thaliana using

microarray technique showed that eEF1A gene family was

expressed in all tissues but it was also indicated that each eEF1A

genes had a unique expression pattern regulated differently by a

variety of stimuli [44].

Although eEF1A genes in some plant species have been well

characterized, the cassava eEF1A genes family member, especially

their expression and promoter activity have not been reported

before and thus need to be explored. In this study, we describe the

isolation and functional characterization of several new promoters

of EF1A gene family from Manihot esculenta (MeEF1A). The

MeEF1A promoters were analyzed by transient expression system

using GUS reporter gene in both dicot and monocot plants such as

tobacco (Nicotiana tabacum), tomato (Solanum lycopersicum) and

banana (Musa acuminata). We hope these promoters may have a

unique characteristic and can be used for genetic engineering in

plant.

Materials and Methods

Materials
Cassava (Manihot esculenta Cranz var. Adira) leaf materials were

used for promoter isolation. Plants such as Tobacco (Nicotiana

tabacum) seedling, Tomato (Solanum lycopersicum) and Banana (Musa

acuminata var. Mas) fruit materials were used for expression

analysis.

Promoter Isolation
Gene family identification was done by comparing the first exon

of EF1A gene from cassava (AF041463) using blastn to the EF1A

gene family available on Manihot esculenta genome database

(Phytozome) [45]. A set of primers then was designed from that

blastn result in order to clone the promoters from EF1A gene

family. Genomic DNA was isolated from cassava leaves using

CTAB method [46]. The promoter regions from each gene family

were amplified using specific primers (Table 1). PCR amplification

was performed using Kapa 2G PolymeraseTM (Kapa Biosystem) in

Veriti 96 well Thermal cycler (Applied Biosystems).

Each of PCR products from single PCR reaction were purified

using GeneaidTM PCR purification kit (Geneaid) following the

manufacturer’s protocol and cloned into pJET1.2/blunt vector

(Fermentas). Then the vectors are introduced into Escherichia coli

strain DH5a with heat shock method [47]. The plasmid vector

was extracted by GeneaidTM plasmid isolation kit (Geneaid) and

both strands were sequenced using pJET 1.2 forward and pJET

1.2 reverse primers at Macrogen Inc, South Korea.

Promoter Sequence Analysis
The sequence data set were analysed using GeneiousTM 5

software [48] while the homology searches were performed using

blastn at the NCBI website (http://blast.ncbi.nlm.nih.gov).

Subsequently, a blastn search in cassava genome was performed

at the Phytozome v9.0 website (http://www.phytozome.net/

cgi-bin/gbrowse/cassava) [49]. Promoter region was confirmed

using Expressed Sequence Tag (EST) database from GenBank

[50] and prediction of 59UTR (Untranslated Region) intron was

performed at NetGene2 website (http://www.cbs.dtu.dk/services/

NetGene2/) [51]. Conserved cis-acting regulatory was carried out

using the PATTERN search from Softberry website (http://www.

softberry.com/berry.phtml). PLACE [52] and PlantCARE [53]

software were used to detect putative cis-acting regulatory

elements in the MeEF1A promoter sequence, The promoter

architecture was drawn using CLC Sequence ViewerTM 6

software (http://www.clcbio.com).

Construction of Plant Transformation Vectors
The binary vector pBI-121 [54] was used in this study. The

isolated promoters were inserted into this binary vector and

replacing the CaMV 35S promoter. Diagrammatical construct can

be seen in Figure 1. The construction of plant transformation

vector was generated by using Overlap extension PCR cloning

(OEPC) method [55]. In present study we used Phusion

Polymerase (Finnzymes). Specific OEPC primer for constructing

the vectors can be seen in Table 1. In order to verify the correct

integration, the plasmids were sequenced using each specific

promoter forward primer and gus-Seq R primer (Table 1).

Transient Transformation of Plant Tissue
The expression vector constructs pBI-MeEF1A3, pBI-

MeEF1A5, pBI-MeEF1A6 and pBI- 121 were introduced into

Agrobacterium tumefaciens strain GV3101 by freeze-thaw method

[56]. To investigate the promoter’s activity, one week tobacco

seedlings, mature tomato and banana fruit tissues were trans-

formed using these agrobacteria lines (namely transient transfor-

mation lines). Agrobacteria lines were grown as individual culture

at room temperature (27uC) in YEP medium containing antibiotic

selection (100 mg/ml Kanamycin and 50 mg/ml Rifampicin)

until each culture reached OD600 = 0.8. Individual cultures were

centrifuged at 7,000 g for 10 min and suspended in infiltration

media [0.56 MS (pH 6.0, Caisson Laboratories), 1% sucrose,

100 mM acetosyringone, 0.005% Silwet L-77]. The plant tissues

were submerged in a clean petri dish containing 20 ml of each

suspension culture under vacuum (Biorad Vacuum Pump) for 15

minutes. Co-cultivation was carried out in the dark at 23uC for

72 hr. Quantitative and qualitative measurements of GUS activity

were performed post co-cultivation. The pBI-121 binary vector

that contains the GUS gene driven by the CaMV 35S promoter

was used as a positive control and A.tumefaciens without expression

vector was used as a negative control.

Qualitative Analysis of GUS Activity
Expression of the b-glucuronidase (GUS) gene was detected by

histochemical staining [57]. All of transformed tissue samples

(including positive and negative control) were immersed in X-Gluc

solution (1 mM 5-bromo-4-chloro-3-indolyl-b-D-glucuronide; Sig-

ma), 100 mM sodium phosphate buffer pH 7.0, 0.5 mM

K3[Fe(CN)6], 0.5 mM K4[Fe(CN)6], 10 mM Na2EDTA, 0.1%

(v/v), Triton X-100 and incubated at 37uC for 18 h in the dark.

For better visualization of the stained tissue, the samples were

rinsed at room temperature three times with increasingly

concentrated ethanol solutions (70–100%) in order to remove

chlorophyll. The cleared samples were observed and photo-

graphed with a SLR digital camera (Canon EOS 1100DC). GUS-

stained tissues and plants in the present paper represent the typical

results of at least three independent transient transformation lines

for each construct. Each of independent experiment lines was

consist of 30 samples.

Quantitative Analysis of GUS Activity
Banana and tomato tissue from transformed and untransformed

samples were used to determine GUS activity. Approximately of

200 mg of tissue were ground in a mortar with liquid nitrogen and
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homogenized in 200 mL of GUS extraction buffer (50 mM

phosphate buffer, pH 7.0, 10 mM Na2EDTA, 0.1% Triton X-

100, 0.1% sodium lauryl sarcosine and 10 mM b-mercaptoetha-

nol. The homogenate was then centrifuged for 10 min at 12.000 g

at 4uC, and the quantification of GUS activity in the supernatants

was determined according to a previously described method

[57,58]. Briefly, GUS activity assay was performed using PNPG

(p-nitrophenyl-D-glucuronide) as substrate and was measured at

415 nm with a Ultrospec 2000/UV apparatus (Pharmacia

Biotech) and expressed as nmol of PNP (p-nitrophenyl) released

per min per mg of protein at 37uC. Protein concentration of the

samples was determined by the Bradford assay method using BSA

(bovine serum albumin) as standard [59]. Bradford assay was

repeated three times. The data presented were collected from at

least three independent transient transformation lines for each

construct. Each of independent experiment lines was consist of 10

samples. Differences in GUS activity among treatment groups

were tested with least significant difference (LSD) and one-way

analysis of variance (ANOVA) in GenStat 15.0 software.

Results

Isolation and Sequence Analysis of MeEF1A Promoters
The three fragments from genomic DNA of M.esculenta cultivar

Adira were succesfully cloned and sequenced, a 1247 bp named

MeEF1A3, 1254 bp named MeEF1A5 and a 1168 bp named

MeEF1A6. In order to identify these fragments, the sequences

were analyzed using the blastn on Cassava Phytozome v9.0

website [49]. A homology search at that website resulted in a

highly homologous sequence present in scaffold 02421 for

MeEF1A5 (99%) and for MeEF1A6 (99%), but in scaffold

03015 we found only 90% similarity for MeEF1A3.

These sequences were also compared with the EST’s of M.

esculenta in order to identify putative 59UTR intron which may

present in these promoters. The promoters MeEF1A3 and

MeEF1A6 had 99% similarity with an EST from cassava

(DB934938) and (DB936919), respectively. A 496 bp intron was

found in the 59UTR of MeEF1A3 and a 842 bp intron was found

in the the 59UTR of MeEF1A6. Only MeEF1A5 that didn’t have

a very high EST similarity in GenBank database (about 98% with

DB9812938). Moreover, we only found one splicing site from the

EST database, therefore the 59UTR intron was predicted using

Table 1. Primer sequences used in this study.

No Primer Name Sequences (59-39) Base

Cloning

1 MeEF1A-UnivReverse GTGAACCTTCTCITTACCCATT 22

2 MeEF1A3-Forward TTTACCGTTGTTGGCAGCAA 20

3 MeEF1A5-Forward AATTCTTTCCCTGCGCCAAT 20

4 MeEF1A6-Forward AAAGATGGACGGCAAATGGT 20

Overlap Extension PCR Cloning

5 OEPC-UnivReverse AGGACGTAACATAAGGGACTGACCACCCGGGTGAACCTTCTCGTTACCCTTT 52

6 OEPC-MeEF1A3Forward CATGATTACGCCAAGCTTGCATGCCTGCAGTTTACCGTTGTTGGCAGCA 49

7 OEPC-MeEF1A5Forward CATGATTACGCCAAGCTTGCATGCCTGCAGAATTCTTTCCCTGCGCCAAT 50

8 OEPC-MeEF1A6Forward CATGATTACGCCAAGCTTGCATGCCTGCAGAAAGATGGACGGCAAATGGT 50

Validation

9 CaMV 35-Forward ATAGAGGACCTAACAGAACTCGC 23

10 GUS Seq-Reverse GGCTTTCTTGTAACGCGC 18

Bold nucleotides are the specific primers to the promoter therefore italic nucleotides are the specific primer complimentary to the vector.
doi:10.1371/journal.pone.0084692.t001

Figure 1. Schematic diagram of three MeEF1A promoters constructs. The region showed in here represent T-DNA region in pBI-121.
doi:10.1371/journal.pone.0084692.g001
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splicing site NetGene2 software [51] and we found a putative

856 bp intron in the 59UTR of MeEF1A5.

Sequence analyses showed that EF1A promoters have putative

cis-acting elements which are predicted based on the sequence

similarity and the relative position to the transcription start site

(TSS) as we can see on (Table 2). These putative control elements

that contain a TEF1 box, a TELO box and TATA box are

conserved among eEF1A promoter in plants (Table 2). These

putative element sequences in MeEF13, MeEF1A5 and MeEF1A6

are similar to the consensus sequences (Table 2).

The summary of several plants EF1A promoter architecture

including our results can be seen on Figure 2. The nucleotide

sequence and annotation of MeEF1A3, MeEF1A5, and MeEF1A6

promoters were deposited into GenBank [50] under accession

number KC9551253, KC9551254 and KC955125, respectively.

Qualitative Analysis of GUS Activity
The activities of MeEF1A promoters were evaluated through

transient expression study by using agro infiltration method in

various plant tissues. The results from GUS histochemical assay

revealed that MeEF1A3 was able to drive the expression of gusA

gene in seedlings cotyledon but not in its root, MeEF1A6 able to

regulate the gusA gene in almost all of tobacco seedlings tissue, but

interestingly MeEF1A5 was not able to regulate the gusA gene in

all of seedling tissue (Figure 3). In addition, MeEF1A3, MeEF1A5

and MeEF1A6 were able to drive the expression of gusA gene in

banana fruit pulp and tomato fruit with different expression level

(Figure 3). As expected, the CaMV35S promoter drives the

expression of gusA gene in all of tissues (tobacco seedlings, banana

fruit and tomato fruit). Furthermore, no endogenous GUS activity

was detected in non-transformed tissues (negative control). This

observation clearly indicated that the blue spots observed were due

to introduced genes.

Quantitative Analysis of GUS Activity
To determine the strengths of the different MeEF1A promo-

ters, a quantitative GUS activity assay was conducted by

spectrophotometric PNPG assay. Measurement of GUS enzyme

activity in this study was made on monocot (banana) and dicot

(tomato) system (not in tobacco seedlings). The spectrophotometric

data for the transformed tomato and banana fruits containing

different MeEF1A constructs are shown in Figure 4.

Varying levels of GUS activities were obtained among fruits

transformed with the different promoter constructs (Figure 4).

There were significant differences among tomato and banana

fruits. Overall, the GUS activity gave higher value in banana

fruits. In this fruit, MeEF1A6 exhibited the highest expression level

with an average value of 525 nmol/min/mg whereas GUS activity

driven by CaMV35S promoter using similar tissue was 234 nmol/

min/mg (two-fold lower). Other promoters MeEF1A3 and

MeEF1A5 had no significant differences and had relatively equal

strength compared to CaMV35S promoter. This result showed

that MeEF1A6 promoter was stronger than CaMV35S promoter

in banana fruit.

In tomato fruit, MeEF1A6 promoter drove a higher expression

than CaMV35S promoter. However, the level of expression was

not as high as in banana fruits. In the other hands, MeEF1A3 and

MeEF1A5 had very low activity compared with MeEF1A6 and

CaMV35S in tomato fruit but their activity were no significant

differences in this tissue (Figure 4). All of these quantitative data

correlated with the results observed in the histochemical GUS

staining patterns in both banana and tomato fruit tissues (Figure 3).

Discussion

The MeEF1A5 and MeEF1A6 promoter sequence showed high

similarity with the scaffolds data (02421) obtained from Cassava

Phytozome database, 99% and 99% identity, respectively. These

differences are probably because we were using Adira genotypes

from BALITKABI, Indonesia instead of AM560-2 genotypes

developed by CIAT, Columbia [45]. The same results were

reported by other cassava researcher when the sequences were

isolated from different genetic background [60]. Interestingly,

MeEF1A3 promoter had 90% similarity to corresponding

Table 2. Conserved motif elements in plants EF1A promoters.

No Promoter TEF1 Box TELO Box TATA Box TATA Box TSS Reference

n n 1st n 2nd n

1 SoEF1A1 TTGGGCCCAATAGCCC 13 TGAACCCTAG 9 TTATAAAAA 36 TCGGCCG AF331849,JN132399

[64]

2 SlEF1A1 AGGGGCATTTACGTAA 27 TGAACCCTAA 15 CTATAAAAT 26 TTCATTA X53043 [63]

3 AtEF1A1 AGGGGCATAATGGTAA 25 TAAACCCTAA 21 CTATAAATA 20 TCCATTT X16430 [62]

4 AtEF1A2 AAGGGTAAAATTGTCA 20 TAAACCCTAA 18 CTATAAATA 21 TTTATTT X16431 [62]

5 AtEF1A3 AGGGGTACGTTTGTAA 20 TAAACCCTAA 24 CTATAAATA 5 CTCGAAT X16432 [62]

6 AtEF1A4 AAGGGCAAATTAGTAA 24 AAAACCCTAG 11 CTATAAGTA 18 TTAGGGT X16432 [62]

7 MeEF1A1 AGGGTCAAAAATGTAA 39 GTAACCCTAA 9 CTATATATA 1 GTATAAGTA 16 CTCAGTT AF041463 [30]

8 MeEF1A3 AAGGGCAAAACCGTAA 30 GTAACCCTAG 11 CTATAAATA 26 GTTCGCA KC955123

[This study]

9 MeEF1A5 TTGGACAAAATCGTAA 23 GGAACCCTAA 11 CTATAAATA 28 TTGTTTC KC955124

[This study]

10 MeEF1A6 TTAGACAAAACCGTAA 11 GGAACCCTAG 11 CTATAAATA 28 TCCCGCT KC955125

[This study]

Consensus WNGGWCAAAANNGTAA GNAACCCTAR CTATAAATA

Bold nucleotides are conserved nucleotides.
*n: nucleotides between motifs.
doi:10.1371/journal.pone.0084692.t002
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sequence at the scaffold 03015 from database. This was because

we found 108 bp deletions in MeEF1A3 promoter region. Some

research reported that insertion or deletion that occurred in

promoter region was not only connected with improper gene

regulation that leads to disease but also as a part of micro-

evolution process as reviewed in Vedel and Scotti [61].

It is interesting that introns were found on the 59-end of the

MeEF1A3, MeEF1A5 and MeEF1A6 promoters. The promoter

sequences of the EF1A gene family (AtEF1A1-4) from Arabidopsis

[62], SlEF1A1 [63] from tomato and SoEF1A1 [64] from

sugarcane also have 59UTR intron. This data indicated that the

present of 59 UTR intron were conserved among EF1A promoters

in plant (Figure 2). The presence of intron in 59UTR region has

been shown to increase the levels of gene expression EF1A in

A.thaliana [62]. This phenomenon is referred as IME or Intron-

Mediated Enhancement [65]. However, the mechanism is largely

unknown. Some efficiently spliced introns boost expression more

than 10-fold, while others have little or no effect [66]. Our

previous results using the promoter MeEF1A1 also showed that

the presence of 59UTR intron affects the gene expression level

[30].

Overall, the highest promoter activity was conferred by

MeEF1A6 and the lowest was conferred by MeEF1A5 (Figure 4).

Compared to the other MeEF1A promoters, MeEF1A5 had the

biggest putative 59UTR intron size (856 bp) and MeEF1A3 had

the lowest putative 59UTR intron size (490 bp) (Figure 2).

Eventhough recent study had revealed that the 59UTR intron

had a role in enhancing the expression of the genes, however the

greater size of the 59UTR intron was not correlated to higher gene

expression, and vice versa [67].

The results from 59UTR splicing site analyses showed that all of

the promoters had conserved splicing site donor AG/GTA and

splicing acceptor site CAG/AT. It is also corroborate with what

has been previously reported that the conserved splicing donor site

in plants is AG/GTAAG while its acceptor TGCAG/G [68]. This

result indicated that 59UTR splicing mechanism among plants

EF1A gene family were conserved.

Another interesting feature in MeEF1A promoters is that they

had several conserved putative cis-acting element such as TATA,

TELO and TEF1 boxes at similar arrangement as we can see from

Table 2. Cis-acting regulatory elements are important molecular

switches involved in the transcriptional regulation of dynamic

networks of gene activities controlling various biological processes.

A putative TATA box (consensus CTATAWATA) sequence was

located at a region approximately between –10 and –45 relative to

the transcription start site (TSS). All of plants EF1A promoters

have single putative TATA box except for MeEF1A1 that contain

two putative TATA boxes. Another motif that we found is TELO

box (consensus AACCCTA). This element was known to interact

with AtPura in A. thaliana [69]. AtPura is Pura homolog protein, a

conserved multifunctional protein in eukaryote and play an

important role for activating or repressing transcription and

translation [70]. TELO box usually found in the upstream

regulatory of ribosomal protein and other translational related

gene [71]. It drives gene expression in root primordial [72]. The

TELO box alone does not confer specificity and must act with

other elements such as TEF1 box to drive expression in root

meristem [72]. This sequence was located approximately between

220 and 255 relative to TSS.

The last cis-acting motif that we found is TEF1 box (consensus

ARGGRYANNNNNGTAA). This element was initially identified

in A. thaliana EF1A gene [62] and several Arabidopsis RP genes

[73]. This motif was located between 240 and 2110 relative to

TSS. TEF1 box is the target for two heteromeric protein

Figure 2. The elongation factor 1 alpha promoter architecture in plants. Nucleotides number relative to their start codon (ATG) show on top
of the graph. SoEF1A1: Saccharum officinarum EF1A1 promoter (AF331849, JN132399); SlEF1A1: Solanum lycopersicum EF1A1 (X53043); AtEF1A1:
Arabidopsis thaliana EF1A1 promoter (X16430); AtEF1A2: Arabidopsis thaliana EF1A2 promoter (X16431); AtEF1A3: Arabidopsis thaliana EF1A3
promoter (X16432); AtEF1A4: Arabidopsis thaliana EF1A4 promoter (X16432); MeEF1A1: Manihot esculenta EF1A1 promoter (AF041463); MeEF1A3:
Manihot esculenta EF1A3 promoter (KC955123); MeEF1A5: Manihot esculenta EF1A1 promoter (KC955124); MeEF1A6: Manihot esculenta EF1A1
promoter (KC955125).
doi:10.1371/journal.pone.0084692.g002

Cassava EF1A Promoter

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e84692



complexes C1 and C2 [74]. Unlike the TELO box, the TEF1 box

alone can confer specific expression, activating transcription in

cells entering cell cycle, undergoing the transition from quiescent

to mitotically active stages [73]. However, the TELO box is

usually associated and works synergically with TEF1 box or Motif

Site II which active in mersitematical tissue or dividing cell [69].

From the results we can see that MeEF1A6 was active in all of the

tissue tested in here therefore MeEF1A3 and MeEF1A5 can only

drove the expression in specific tissue (Figure 3; 4) although they

had similar conserved putative cis-acting element (as described

below).

Generally, the transgene-promoter activities in the plants were

affected by the compatibility between the promoter and the type of

plant and the activity of transcription factors to bind to a specific

subset of a promoter [75]. All of these promoters had TATA box,

TELO Box and TEF1 Box at different positions and also had

different 59UTR intron length (Figure 2). This was likely to be the

most important factor that made a different expression pattern in

these promoters. We believe that the cis-acting motif other than

conserved cis-acting motif which described in here may also take a

role. Further investigation needs to be done using promoter

deletion analysis for characterizing of these promoters such as

previously conducted by Curie et al [76] in A.thaliana EF1A

promoter (AtEF1A1).

Conclusions

In this study, the isolation and characterization of three

promoter sequences of MeEF1A gene coding for the elongation

factor 1 alpha protein of cassava were reported. Results obtained

from transient expression experiments in tobacco seedlings

(Nicotiana tabacum), tomato fruits (Solanum lycopersicum) and banana

fruits (Musa acuminata) showed that these promoter sequences are

functional, and therefore, it is suitable for further experiments,

including stable genetic transformation of model plants (e.g

A.thaliana) to characterize these promoters. In addition, the results

obtained from sequence comparative analysis showed that

promoter activity from a gene family had a distinct activity

Figure 3. Photographic representations of the comparison of transient histochemical assay in various tissue carrying gusA gene
driven by different MeEF1A promoters. Scale bars indicated 5 mm.
doi:10.1371/journal.pone.0084692.g003
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although they have similar arrangement of conserved cis-acting

motifs. Based solely on our result, we hypothesized that MeEF1A6

may fell under the category of constitutive promoter and also

comparable to CaMV 35S promoter therefore MeEF1A3 and

MeEF1A5 were specific promoter (non-constitutive promoter). In

summary, the DNA sequence identified here is a new promoter

that can be a potential candidate for genetic engineering of cassava

or other plant.
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