Papurana elberti and Duttaphrynus melanostictus (Asian Common Toad) Interspecific amplexus

Article in Herpetological Review · January 2016

CITATION
1

READS
17

6 authors, including:

Sean B Reilly
University of California, Berkeley
11 PUBLICATIONS 39 CITATIONS

Jimmy Mcguire
University of California, Berkeley
154 PUBLICATIONS 4,124 CITATIONS

Evy Arika
Indonesian Institute of Sciences
30 PUBLICATIONS 100 CITATIONS

Djoko T Iskandar
Bandung Institute of Technology
87 PUBLICATIONS 1,760 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Trimeresurus insularis (White-lipped Island Pit Viper) Foraging behavior and diet View project
- Papurana elberti and Duttaphrynus melanostictus (Asian Common Toad) Interspecific amplexus View project

All content following this page was uploaded by Sean B Reilly on 21 September 2017.

The user has requested enhancement of the downloaded file.

At 1019 h on 18 March 2014, at Isleta town (8.5467°N, 81.1282°W, WGS84; 571 m elev.), Santa Fe District, Veraguas province, Republic of Panama, we observed a female Oophaga vicentei wandering and foraging on the ground. The area is a primary premontane tropical forest with high slopes (> 30%), where the species is normally heard vocalizing above 15 m high in the trees and rarely seen. Our observation might suggest that this species is not fully tied to an arboreal lifestyle, adding to previous habitat descriptions for the species (see Jungfer et al. 1996. Herpetofauna 18:17–26). Interestingly, in some terrestrial poison frogs like Dendrobates auratus, the male may climb up high on trees searching for bromeliads to transfer tadpoles from the ground (Summers 1989. Anim. Behav. 37:797–805) and in Oophaga pumilio a female transferred a tadpole as high as 12 m up a tree (Young 1979. Biotropica 11:238–239). Our observed female was not carrying any tadpole when seen; therefore it is uncertain whether the known behavior of O. vicentei is based on reproductive behavior, more research on this species in the wild is needed.

This work was conducted during a field research campaign under a scientific permit (SC/A-5-14) provided by the Panamanian National Authority for the Environment (ANAM).

BERNARDO PEÑA (e-mail: bernadp1990@gmail.com), VAYRON DE GRACIA, University of Panama, School of Biology, Canto Del Llano, Santiago de Veraguas, Panama (e-mail: vayrondv_13grx@hotmail.com); ERIC E. FLORES, Panama Wildlife Conservation & Sistema Nacional de Investigacion de Panama (SNI), Apartado 0923-00126, Santiago de Veraguas, Panama (e-mail: eric@panamawildlife.org).

PAPURANA ELBERTI and DUTTAPHYRUS MELANOSTICTUS (Asian Common Toad). INTERSPECIFIC AMPLEXUS. The Lesser Sunda Islands of eastern Indonesia are oceanic islands with a small assemblage of anuran fauna that have colonized the region by over-water dispersal. The island of Sumba contains only five native frogs: Fejervarya cancrivora (Crab-eating Frog), Litoria everetti (Everett’s Tree Frog), Polypedates leucomystax (Four-lined Tree Frog), Kaloula baleata (Flower Pot Toad), and Papurana elberti. We conducted field surveys at the northern edge of Laiiwangi Wanggameti National Park (Desa Priang Kareha, Kecamatan Tabundung, Kabupaten Sumba Timor) on the southwestern portion of the island and encountered a large stream flowing over limestone cliffs in a densely forested habitat. The only frogs found in this stream were P. elberti and a very large number of Duttaphrynus melanostictus (Asian Common Toad). This finding represents a new geographic distribution record for D. melanostictus (see Reilly et al. 2016. Herpetol. Rev. 47, in press). Papurana elberti is restricted to Sumba, Timor, and Wetar Islands, while D. melanostictus is native to southern Asia and the Greater Sunda Islands of Java and Sumatra. While conducting a night survey of the stream on 24 October 2012, we found a male P. elberti amplexing a male D. melanostictus (10.0210°S, 120.0579°E, WGS 84; 348 m elev.) (Fig. 1). Although the individuals observed in amplexus were not collected, other specimens from this expedition are housed at either the Museum of Vertebrate Zoology (MVZ), Berkeley, California, USA or at the Museum Zoologicum Bogoriense (MZB), Cibinong, Indonesia.

SEAN B. REILLY (e-mail: sibr@berkeley.edu), ALEXANDER L. STUBBS (e-mail: astubbs@berkeley.edu), and JIMMY A. MUIR, Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, Berkeley,
PIPA CARVALHOI (Carvalho’s Surinam Toad; Sapo d’água). HINDLIMB MALFORMATION. Reports on skeletal abnormalities in amphibians have been recorded for over 200 years and have revealed that the occurrence of malformations has significantly increased on a global scale (Ouellet 2000. In Sparling et al. [eds.], Ecotoxicology of Amphibians and Reptiles, pp. 617–646. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, Florida).

During a nocturnal survey on 9 May 2015 in the municipality of São Roque do Canaã in the northwest region of Espírito Santo in southeastern Brazil (19.6736°S, 40.7317°W; 150 m elev.), ATM collected an adult P. carvalhoi (SVL = 58 mm) with a malformation of the left hind limb (Fig. 1A). This specimen (MBML 7920) is deposited in the Zoological Collection of Museu de Biologia Mello Leitão, Santa Teresa municipality, Espírito Santo state, Brazil. The individual presented a malformation characterized by ectromelia of the tibia and fibula, which likely severely affected its range of motion and ability to swim. The radiography of the left hind limb confirmed that the bones were fused and not well developed (Fig. 1B). This malformation is a possible outcome of environmental contamination with pesticides or fertilizers (Sparlin et al. 2015. Ecotoxicology 24:262–278); this is plausible because the application of pesticides to crops is a regular practice in Espírito Santo. It is recommended that additional studies be performed at the site to verify whether the habitat may have been affected by pesticide use.

We thank the Instituto Chico Mendes de Conservação da Biodiversidade for the permit issued for this study (n° 48.058-2), Coordenação de Aperfeiçoamento Pessoal de Nível Superior for a postgraduate scholarship, and the Laboratório de Ecologia de Anfíbios e Répteis, Universidade Vila Velha which sponsored the research (UVV 44/2014).

ALEXANDER T. MÔNICO, Universidade Vila Velha, Programa de Pós Graduação em Ecologia de Ecossistemas, Laboratório de Ecologia de Anfíbios e Répteis, Rua Comissário José Dantas, n° 21, Bairro Boa Vista, CEP 29102-770, Vila Velha, Espírito Santo, Brazil (e-mail: alexandermonico@hotmail.com); THIAGO SILVA-SOARES, Instituto Nacional da Mata Atlântica, Laboratório de Zoologia, Avenida José Ruschi, n° 4, Centro, CEP 29650-000, Santa Teresa, Espírito Santo, Brazil. (e-mail: thiagosilvasonares@hotmail.com); RUTE B. G. CLEMENTE-CARVALHO, Universidade Vila Velha, Laboratório de Ecologia de Anfíbios e Répteis, Rua Comissário José Dantas, n° 21, Bairro Boa Vista, CEP 29102-770, Vila Velha, Espírito Santo, Brazil (e-mail: rute.carvalho@uvv.br).